электронный модуль эм-07

ПАСПОРТ

ипк5.109.079пС

НАЗНАЧЕНИЕ

		Стр.
	1.Назначение	3
	2. Технические характеристики	3
	3.Комплект поставки	4
	4. Устройство и принцип работы	4
	5. Конструкция прибора	6
	б.Указания мер безопасности	6
	7.Подготовка к работе	6
	8.Порядок работы	7
	9. Техническое обслуживание	8
-	10.Свидетельство о приемке	8
-	11.Гарантийные обязательства	8
	Приложение	9

1. НАЗНАЧЕНИЕ.

Электронный модуль ЭМ-07 предназначен для приема информации, поступающей с индуктивного преобразователя перемещений, расчета и индикации результата.

Электронный модуль (модуль) в автономном исполнении выполняет следующие функции:

- измерение и цифровую индикацию в мкм относительного положения измерительного штока;
- установку нуля в любой точке диапазона измерений;
- установку полей допусков;
- учет коэффициента преобразования измерительной станции;
- инверсию результата измерения.

При сопряжении модуля с любым IBM-совместимым компьютером по интерфейсу RS-232 возможно выполнение следующих дополнительных функций:

- допусковый контроль;
- нахождение минимума, максимума и их разности;
- размерная сортировка;
- построение гистограмм;
- статистическая обработка результатов измерений.

2. ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

2.1. Диапазон измерений, мкм ±1	99,9
2.2. Дискретность отсчета, мкм	0,1
2.3. Диапазон установки пороговых значений, мкм ±1	99,9
2.4. Дискретность установки пороговых значений, мкм	0,1
2.5. Питание от аккумулятора 3,6В 600мА*час	
2.6. Ток потребления, мА, не более	
в режиме работы	2,5
в дежурном режиме	,005
2.7. Продолжительность автономной работы от аккумуля	ятора
без подзарядки, час, не менее	200*
2.8. Установка таймера на отключение питания, мин.	5 <u>+</u> 1
2.9. Условия эксплуатации:	
Температура окружающего воздуха, °С	20 <u>+</u> 5
Изменение температуры при работе не должно превышать (0,5°C
за один час работы. При увеличении скорости измен	нения
температуры допускается корректировка настройки нул.	N R
калибровки.	
Атмосферное давление, Па 101325 <u>+</u>	4000
Относительная влажность окружающего воздуха	-
i vi	50 <u>+</u> 20
	3x65
2.18. Масса, г, не более	50

Примечание. *Продолжительность работы установлена для указанного типа аккумулятора. При использовании никельметаллогидридных аккумуляторов большей емкости продолжительность работы пропорционально увеличивается.

3.КОМПЛЕКТ ПОСТАВКИ

В комплект поставки модуля входят:

- модуль 1шт.

- паспорт

- упаковочная коробка 1шт.

1шт.

4.УСТРОЙСТВО И ПРИНЦИП РАБОТЫ

- 4.1. Модуль выполнен на базе AVR-процессора AT90S4414 фирмы ATMEL и предназначен для выполнения следующих функций:
 - формирования временной диаграммы измерения,
 - расчета и запоминания при калибровке величины коэффициента преобразования (перемещение изменение индуктивности показания индикатора),
 - установки и запоминания предельных значений для допускового контроля,
 - управления жидкокристаллическим индикатором,
 - выдачи результатов измерения по интерфейсу RS-232 на персональный компьютер,
 - отключения питания при длительном бездействии.

Значение коэффициента преобразования и установленные предельные значения хранятся в энергонезависимой памяти процессора, что исключает необходимость перенастройки после выключения питания. Встроенный таймер на отключение переводит м модуль при длительном бездействии в ждущий режим, при котором гаснет индикация и резко уменьшается потребляемый ток, что позволяет увеличить ресурс аккумуляторных батарей.

- 4.2. Жидкокристаллический индикатор имеет 3,5 десятичных разряда и обеспечивает визуальное считывание результатов измерений.
 - 4.3. Назначение органов управления.

Режимы работы модуля задаются нажатием одиночных кнопок, или их комбинации.

Кнопка ON/OFF предназначена для выключения питания, при этом происходит запоминание установленного коэффициента преобразования и заданных границ поля допуска. Включение питания происходит при нажатии любой кнопки.

При нажатии кнопки MIN или MAX на индикацию выводится соответственно нижняя или верхняя границы установленного поля допуска.

Кнопка ∇ предназначена для установки "электронного нуля" (номинального значения, при котором показания равны 0.0) в любой точке хода штока индуктивного преобразователя.

При нажатии комбинации кнопок выполняются следующие ϕ ункции.

Одновременное нажатие комбинации кнопок « и » приводит к сбросу установки "электронного нуля" и совмещению его с

"физическим нулем", который расположен примерно в середине хода штока индуктивного преобразователя. При этом на индикаторе появляется надпись " $H\PiP$ ".

Одновременное нажатие кнопки MIN в комбинации с кнопками

« или » позволяет соответственно уменьшить или увеличить нижнюю границу поля допуска. Устанавливаемое значение границы при этом отображается на индикаторе. Аналогичным образом, используя комбинацию кнопок МАХ и кнопок « или », возможно скорректировать верхнюю границу поля допуска.

При совместном нажатии кнопок MIN и ∇ или MAX и ∇ происходит калибровка микрокатора и запоминание коэффициента преобразования. Методика калибровки приведена в п.7.3.

В случае некорректного задания режимов работы на индикаторе появляется надпись "НПР".

В основу работы модуля положены известные математические операции

$$T1=16000*2\pi*\sqrt{L}+\Delta*\sqrt{C}; T2=16000*2\pi*\sqrt{L}-\Delta*\sqrt{C};$$

$$T1^2 = K^* (L+\Delta) *C; T2^2 = K^* (L-\Delta) *C;$$

$$T1^2-T2^2=K^*C^*(L+\Delta-L+\Delta)=K^*C^*2^*\Delta;$$

$$\Delta \equiv T1^2 - T2^2 = (T1 - T2) * (T1 + T2)$$
, где

T1-значение времени генерации 16000 периодов одной катушкой индуктивного преобразователя, накопленное внутренним таймером процессора;

- T2- значение времени генерации 16000 периодов другой катушкой индуктивного преобразователя, накопленное внутренним таймером процессора;
 - L- индуктивность катушек преобразователя;
- Δ изменение индуктивности, пропорциональное перемещению измерительного наконечника преобразователя;
- C- емкость конденсатора, подключаемого для возбуждения генерации;
 - ≡- знак пропорциональности.

5.КОНСТРУКЦИЯ

5.1. Конструктивно модуль состоит из печатной платы с установленными на ней микропроцессором, кнопками управления и индикатором.

6.УКАЗАНИЯ МЕР БЕЗОПАСНОСТИ

- 6.1. При подключении аккумулятора к модулю соблюдайте полярность, в противном случае модуль может выйти из строя.
- 6.2. Во избежание сокращения срока службы не допускайте глубокого разряда аккумуляторных батарей.

6.3. При длительном хранении модуля отключите аккумуляторную батарею. Зарядите батарею и храните ее отдельно.

7.ПОДГОТОВКА К РАБОТЕ

- 7.1. Подключите преобразователь перемещений к модулю согласно принципиальной схемы.
- 7.2. Подключите аккумуляторную батарею к модулю, соблюдая полярность.
 - 7.3. Откалибруйте модуль по следующей методике.
- 7.3.1. Установите индуктивный преобразователь в измерительную стойку и включите питание модуля, нажав любую кнопку.
- 7.3.2. Подберите из комплекта образцовых плоскопараллельных концевых мер длины (КМД) две с номинальным интервалом 100 мкм. Фактическое значение интервала может отличаться от номинального и составить, например 100,9 мкм.
- 7.3.3. Сбросьте ранее запомненное значение нулевого (0,0) отсчета одновременным нажатием кнопок « и ». При этом точка нулевого отсчета установится примерно в середине хода штока индуктивного преобразователя.
- 7.3.4. Установите меньшую КМД на столик измерительной стойки и микрометрическим винтом стойки установите показания модуля (0 \pm 2.0) мкм. Зафиксируйте измерительный столик стойки.
- 7.3.5. Задайте новое положение точки нулевого отсчета, для чего нажмите и отпустите кнопку ∇ . Показания индикатора +0.0 свидетельствуют о том, что размер меньшей КМД принят за точку нулевого отсчета.
 - 7.3.6. Установите на столик большую КМД.

Нажмите кнопку МАХ и, удерживая ее, с помощью кнопок « и » добейтесь показаний индикатора, равных фактическому интервалу мерных плиток (в нашем примере +100,9 мкм). Вновь нажмите кнопку МАХ и, удерживая ее, дополнительно нажмите кнопку ∇ . При этом будет рассчитан коэффициент преобразования измерительного тракта и его значение запомнится в энергонезависимой памяти процессора. Отпустите кнопку ∇ , а затем кнопку МАХ. Убедитесь, что показания индикатора соответствуют ($+100.9 \pm 0.1$) мкм.

Аналогичным образом можно провести установку чувствительности, приняв большую КМД за нулевое отклонение, и используя кнопки MIN и ∇ .

- 7.4. Описанный способ калибровки позволяет учесть коэффициент передачи измерительной станции, для чего при выполнении операций п. 7.3 введите фактический интервал КМД с учетом коэффициента передачи станции.
- 7.5. Выключите питание модуля, нажав кнопку ON/OFF при этом произойдет запоминание установленного значения коэффициента преобразования (калибровки).

- 8.1. Установите модуль на объект измерения и включите питание нажатием любой из кнопок.
- 8.2. Для наиболее полного использования всего диапазона измерений задайте положение точки нулевого отсчета вблизи середины хода штока индуктивного преобразователя, для чего выполните следующие операции.
- 8.2.1. Установите на позицию измерения контролируемую деталь с размером близким к номинальному.
- 8.2.2. Нажмите одновременно кнопки « и » и, отпустив их, переместите корпус микрокатора в такое положение, чтобы показания индикатора составили $(0 \pm 10,0)$ мкм.
- 8.2.3. Нажмите и отпустите кнопку ∇ и проконтролируйте появление на индикаторе показаний (+0.0 \pm 0.1) мкм.
- 8.2.4. Нажимая кнопки « или » установите показания индикатора, равными отклонению детали от номинального размера.
- 8.3. Проверьте правильность калибровочного коэффициента, устанавливая на позицию измерения эталонированные детали с известным приращением и сравнивая показания индикатора. При необходимости проведите процедуру установки калибровочного коэффициента в соответствии с методикой $\pi.7.3$.
- 8.4. Если в процессе контроля на индикаторе появляются символы "-_ _ _" или "+ $\overline{}$ ", то это свидетельствует о выходе результатов измерения за границы диапазона измерений. В этом случае рекомендуется сдвинуть положение точки нулевого отсчета в соответствующую сторону в по методике п.п.8.2.2 8.2.4 для детали с отклонением размера от номинального.
- 8.5. Для разбраковки деталей по принципу «годен-брак» предварительно установите верхнее и нижнее значения поля допуска следующим образом.

Нажмите кнопку МАХ и, удерживая ее, с помощью кнопок « и » установите верхнюю границу поля допуска. Аналогичным образом с помощью кнопки МІN установите нижнюю границу поля допуска. При этом учтите, что нижняя граница не может быть больше верхней.

Если в процессе контроля на индикаторе появляются показания совместно с "OVER, LO BAT", то это свидетельствует о выходе результатов измерения за границы установленного поля допуска.

- 8.6. По окончании работы выключите питание модуля, нажав кнопку ON/OFF.
- 8.7. При совместной работе модуля с компьютером соедините их кабелем и действуйте в соответствии с прилагаемой инструкцией. Результат измерения передается в стандарте интерфейса RS-232. Структура кадра приведена в приложении.

9. ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

9.1. Техническое обслуживание проводится с целью обеспечения нормальной работы модуля и сохранения его технических характеристик в течение всего срока эксплуатации.

- 9.2. Периодичность работ по техническому обслуживанию устанавливается предприятием, эксплуатирующим модуля, с учётом интенсивности эксплуатации.
 - 9.3. Ежедневное техническое обслуживание включает в себя:
- удаление пыли и грязи с внешних поверхностей и органов управления,
- проверку работы органов управления. Если в процессе работы на табло появиться надпись LOW BAT, то это свидетельствует о разрядке аккумуляторной батареи.
 - 9.4. Ежемесячное техническое обслуживание включает в себя:
 - работы в объёме п.9.3.
 - проверку работоспособности по методике раздела 7.

10. СВИДЕТЕЛЬСТВО О ПРИЕМКЕ

Электронный	модуль З соответст		ИПК5.109.079 технической	заводской документац	_
признан годным дл	я эксплуат	ации.		•	
Дата изготов.	ления:				
Представител	ь изготови	теля:			

М.П.

11. ГАРАНТИЙНЫЕ ОБЯЗАТЕЛЬСТВА

- 11.1. Изготовитель гарантирует соответствие технических характеристик модуля 9M-07 разделу 2 паспорта ИПК5.109.079ПС при соблюдении потребителем правил монтажа при вводе в действие и эксплуатации в порядке установленном настоящим паспортом.
- 11.2. Гарантийный срок эксплуатации 12 месяцев со дня ввода в эксплуатацию, но не более 18 месяцев со дня изготовления.
- 11.3. В течение гарантийного срока предприятие изготовитель за свой счет устраняет возникшие неисправности или заменяет модули при несоответствии их параметров указанным в настоящем паспорте.

Адрес изготовителя: 426069 г. Ижевск

ул.5-я Подлесная д.40-А

ООО ВИПП ТЕХНИКА

тел./факс (3412)59-61-63 E-mail: tehnics@udm.net

www: tehnics.udm.net

- 11.5. Претензии по качеству прибора не принимаются:
- при отсутствии паспорта модуля,
- при деформации и механических повреждениях составных частей модуля, вызванных неосторожным обращением,
 - при нарушении условий эксплуатации.

ПРИЛОЖЕНИЕ

Структура кадра передаваемых данных по интерфейсу RS-232

Байт	Б и т ы								
	7 6 5		4	3	2	1	0		
0				байт					
	0	1	0	0	1	1	1	1	
1	знак		сотни мкм		десятки мкм измерения				
	измерения			измере-					
				пия					
	0 - "+"			100	80	40	20	10	
	1 - "-"								
2	единицы мкм измерения		десятые доли мкм измерения						
	8	4	2	1	0,8	0,4	0,2	0,1	
3		превыше		сотни мкм	десятки	десятки мкм верхнего		предела	
	_	ние		верхнего					
	предела	-		предела				- 10	
	0 - "+"	1-порог		100	80	40	20	10	
_	-	превыш.							
4	Единицы мкм верхнего предела			десятые доли мкм верхнего предела					
	8 4 2 1		0,8	0,4	0,2	0,1			
5	знак	Превыше	۷	сотни мкм	-				
	нижнего	ние		нижнего	и десятки мкм нижнего пред		эсдела		
	предела	порога		предела					
	0 - "+"	1-порог		100	80	40	20	10	
	1 - "-"	превыш.							
6	единицы мкм нижнего предела		десятые доли мкм нижнего						
				предела					
	8	4	2	1	0,8	0,4	0,2	0,1	
7									